4 research outputs found

    RAINIER: A Simulation Tool for Distributions of Excited Nuclear States and Cascade Fluctuations

    Full text link
    A new code has been developed named RAINIER that simulates the γ\gamma-ray decay of discrete and quasi-continuum nuclear levels for a user-specified range of energy, angular momentum, and parity including a realistic treatment of level spacing and transition width fluctuations. A similar program, DICEBOX, uses the Monte Carlo method to simulate level and width fluctuations but is restricted to γ\gamma-ray decay from no more than two initial states such as de-excitation following thermal neutron capture. On the other hand, modern reaction codes such as TALYS and EMPIRE populate a wide range of states in the residual nucleus prior to γ\gamma-ray decay, but do not go beyond the use of deterministic functions and therefore neglect cascade fluctuations. This combination of capabilities allows RAINIER to be used to determine quasi-continuum properties through comparison with experimental data. Several examples are given that demonstrate how cascade fluctuations influence experimental high-resolution γ\gamma-ray spectra from reactions that populate a wide range of initial states.Comment: 14 pages, 13 figures, Nuclear Instrumentation and Methods A, 201

    MOESM4 of Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica

    No full text
    Additional file 4: Figure S2. The visualization of the PTKL1-gfp, PTAL1-gfp, PGDN1-gfp and PZWF1-gfp expression in Y. lipolytica AMM. Strains were grown in the Control Medium (left panels) or in the Erythritol Synthesis Medium (rights panels). Pictures were taken at 72 h of the cultivation

    Data_Sheet_1_A Role of a Newly Identified Isomerase From Yarrowia lipolytica in Erythritol Catabolism.docx

    No full text
    <p>Erythritol is a natural sweetener produced by microorganisms as an osmoprotectant. It belongs to the group of polyols and it can be utilized by the oleaginous yeast Yarrowia lipolytica. Despite the recent identification of the transcription factor of erythritol utilization (EUF1), the metabolic pathway of erythritol catabolism remains unknown. In this study we identified a new gene, YALI0F01628g, involved in erythritol assimilation. In silico analysis showed that YALI0F01628g is a putative isomerase and it is localized in the same region as EUF1. qRT-PCR analysis of Y. lipolytica showed a significant increase in YALI0F01628g expression during growth on erythritol and after overexpression of EUF1. Moreover, the deletion strain ΔF01628 showed significantly impaired erythritol assimilation, whereas synthesis of erythritol remained unchanged. The results showed that YALI0F1628g is involved in erythritol assimilation; thus we named the gene EYI1. Moreover, we suggest the metabolic pathway of erythritol assimilation in yeast Y. lipolytica.</p
    corecore